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INTRODUCTION 

It is well known that the Lorentz transformations 

of space time coordinates are between the 

inertial frame of references [1], whereas the 
Rindler transformations are between an inertial 

frame and the frame undergoing uniform 

accelerated motion [2-10]. The space here is 
called the Rindler space, exactly like the 

Minkowski space in the Lorentz transformation 

scenario. Further, the Rindler space is locally 

flat, whereas the flatness of Minkowski space is 
global in nature. Now according to the principle 

of equivalence a frame undergoing accelerated 

motion in absence of gravity is equivalent to a 
frame at rest in presence of gravitational field. 

The strength of the gravitational field is exactly 

equal to the magnitude of the acceleration of the 

moving frame. Therefore the Rindler space may 
be considered to be a space associated with a 

frame at rest in presence of a uniform 

gravitational field. The Rindler space-time 

transformations in natural unit (𝑐 = ћ = 1) and 

in 1+1 dimension are given by [7-10] 

𝑡 =  
1

𝛼
+ 𝑥′ sinh 𝛼𝑡′                      (1) 

𝑥 =  
1

𝛼
+ 𝑥′ cosh 𝛼𝑡′                     (2) 

Where primed coordinates are in the non-inertial 

frame, whereas the unprimed are in the inertial 

one. The Rindler space-time transformations are 

therefore exactly like the Lorentz transformations 
but in uniformly accelerated frame. Here α is the 

local acceleration or local uniform gravitational 

field. Hence the line element in Rindler space in 
1+1 –dimension is given by 

𝑑𝑠2 = −𝑑𝜏2 = − 1 + 𝛼𝑥 2𝑑𝑡2 + 𝑑𝑥2     (3) 

Where 𝛕 is the proper time. Then one can define 
the classical action integral in the form [1] 

 𝑑𝜏
𝐵

𝐴
=   𝐿

𝐵

𝐴
𝑑𝝀                                        (4) 

Where 𝜆 is an affine parameter which is 

changing along the trajectory and having the 

dimension of time. Hence  𝐿 =
𝑑𝜏

𝑑𝜆
, the 

Lagrangian of the particle, explicitly given 

by[11-13] 

𝐿 =   1 + 𝛼𝑥 2 +  
𝑑𝑡

𝑑𝜆
 

2

−  
𝑑𝑥

𝑑𝜆
 

2
 

1

2

          (5) 

The aim of the present article is to investigate 
the classical motion as well as the quantum 

mechanical motion of the non-zero mass particle 

in Rindler space. Apparently from the title of 

this article it may sound that it is a very old 
problem, however so far our knowledge is 

concerned it has not been studied before. 

Therefore we expect that this work should be 
reported in some reputed journal. In this article 

we have obtained the classical geodesics of 

motion and the wave functions for the quantum 

mechanical equation satisfied by the particle. It 
has been observed that the problem is equivalent 

to the problem of free fall. We have also 

investigated this free fall problem of the 

ABSTRACT 

The equation of motion of a massive particle in Rindler space or equivalently in an uniform gravitational 
field has been studied in both classical and quantum mechanical scenarios. The classical geodesics of 

motion of the particle and the wave function for the quantum mechanical equation satisfied by the particle 

are obtained. It has been observed that it is equivalent to the problem of free fall of the particle at the 

center. Unlike the conventional scenario where the fall occurs at the origin, which is a singularity, here it 

takes place at the point which is at a finite distance from the origin (singularity). Further, the classical 

trajectories are not a perihelion type. These are closed type. The massive particle returns to its original 

position if disturbed from the equilibrium position (having minimum energy). 

PACS number: 03.65.Ge,03.65.Pm,03.30.+p,04.20.-q 



The Equation of Motion in Rindler Space 

25                                                                                                Open Access Journal of Physics V2● 14 ● 2018    

particle. Although the gravitational field is 

considered to be uniform throughout, however 
the energy of the particle is minimum at the 

origin. As a consequence the particle will fall at 

the point which is at a finite distance from the 

origin   𝑥 = 0 .Now in the Rindler coordinate 

system, the portion 𝑥 > |𝑡| of the Minkowski 

space is called the Rindler wedge. The second 

wedge 𝑥 < −|𝑡|can be obtained by reflection. 
We call the first one as right wedge and the 

second one the left wedge of Rindler space. The 

null rays act as the event horizons for Rindler 
observers. An observer in the right wedge 

cannot see any eventsin the left wedge. These 

two regions are casually disjoint two 

universes.However, exactly like the Minkowski 
space the past and the present can be defined 

and are casually connected. Therefore the actual 

singularity 𝑥 = −
1

𝛼
is not an accessible to an 

observer in right wedge. The origin (which is 

not a singularity) is set at  𝑥 = 0. To the best of 

knowledge this problem has not been done 

before.Various sections of the article are 
organized in the following manner. In the next 

section we shall develop the formalism of the 

classical motion of the particle in Rindler space. 

In section-3 we have discussed the quantum 
mechanical motion in Rindler space and finally 

in section-4 we have given the conclusion of our 

work. 

CLASSICAL MOTION IN RINDLER SPACE 

Now the well-known Euler-Lagrange equation 
is given by 

𝜕

𝜕𝜆
 

𝜕𝐿

𝜕 
𝜕𝑞 𝑖
𝜕𝜆

 
 −

𝜕𝐿

𝜕𝑞 𝑖
= 0                         (6)     

Where 𝑞𝑖 = 𝑡 or  𝑥. Let us first consider  𝑞𝑖 = 𝑡, 
the universal time coordinate. Since t is cyclic 

coordinate, 
𝜕𝐿

𝜕𝑡
= 0 and therefore 

𝜕𝑡

𝜕𝜏
=

𝐶

 1+𝛼𝑥  2                                        (7) 

Where 𝐶  is a constant and to obtain this 

equation we have used the expression for the 

Lagrangian as given by equation (5). We next 

consider 𝑞𝑖 = 𝑥 , then with some little algebra, 

we have from the Euler-Lagrange equation 

 1 + 𝛼𝑥 𝛼  
𝜕𝑡

𝜕𝜏
 

2

+
𝑑2𝑥

𝑑𝜏 2 = 0               (8) 

On substituting the expression for 
𝜕𝑡

𝜕𝜏
 from 

equation (7) we have 

𝛼𝐶

 1+𝛼𝑥  3 +
𝑑2𝑥

𝑑𝜏 2 = 0                              (9) 

(see Appendix for some outline to obtain this 

expression). Now changing the variable from 𝑥 

to 𝑢 = 1 + 𝛼𝑥  and redefining 𝜏 → 𝐶
1

2𝛼𝝉 , we 

have from the above equation, 

𝑑2𝑢

𝑑𝜏 2 +
1

𝑢3 = 0                          (10) 

This is the classical equation of motion for the 

particle in Rindler space. Integrating both sides 

with respect to 𝑢 , this equation may be 
transformed to the form 

1

2
 
𝑑𝑢

𝑑𝜏
 

2

−
1

2𝑢2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (11) 

Re-writing 𝛕 in its original form and defining 

𝑝 =
𝑑𝑢

𝑑𝜏
 as the momentum of the particle of unit 

mass, we have from the above equation 

𝑝2

2
−

𝐶𝛼2

2𝑢2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐸       (12) 

Where the first term on the left hand side is like 

the kinetic energy for a unit mass and the second 

term is an attractive inverse square potential, 
whereas the constant on the right hand side may 

be treated as the total energy of the particle. We 

further assume that the energy of the particle is 

negative in nature, i.e., we are considering 
bounded motion of the classical particle. Now 

expressing the above equation in the usual form, 

given by 

1

2
𝑝2 + 𝑉 𝑢 = 𝐸                     (13) 

Where 𝑉 𝑢 = −
𝐶𝛼2

2𝑢2 , the inverse square 

attractive potential. Then depending on the 

strength 0.5𝐶𝛼2 of the attractive potential 𝑉 𝑢 , 
the particle may fall at the center( 𝑥 = 0   or  

𝑢 = 1  ), where the momentum becomes zero 

(𝑝 = 0, i.e., particle is in the rest condition) and 

in this situation 𝐸 = 𝑉 𝑢 = 1 = −0.5𝐶𝛼2, the 

maximum depth of the potential, which is also 

the minimum possible value of the total energy. 
Since it is negative it gives the maximum 

binding at 𝑥 = 0  or 𝑢 = 1 . Since α is the 

uniform acceleration, the parameter 𝐶  may be 

treated as the strength of the potential 𝑉 𝑢 . 

One can calculate the two classical turning 

points in case the motion is oscillatory between 

two extreme points, where the particle 

momentum becomes zero. These are at 𝑢 =
𝑢0 = 1 , the central point in the transformed 

special coordinate and 𝑢 = 𝑢1 =  0.5𝐶|𝐸| 
1

2𝛼 

for 𝐸  negative = −|𝐸|. In this case, of course 
the motion is periodic.  However, if because of 

strong attractive gravitational potential at 

𝑢 = 𝑢0  (for the large value of 𝐶 ) the particle 
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falls at the center, i.e., at 𝑥 = 0 or 𝑢 = 𝑢0 = 1 

then the motion will no longer remain 
oscillatory. In fig.(1) we have shown this 

potential well. The coordinate 𝑥 is plotted along 

𝑥 -axis, where the magnitude of depth of 

potential |𝑉 𝑢 |   is plotted along 𝑦 -axis. 
Therefor in actual scenario this is not the 

potential hill but is potential well. But unlike the 

conventional scenario of fall at the center 
problem, there is no singularity at the origin 

(𝑥 = 0) , or at the center of the gravitating 

object[14-16]. The value of 𝑉(𝑢) is −0.5𝐶𝛼2  at 

the origin and → −1  for large 𝑢  values. 
Therefore unlike the conventional case, where 

the potential part → −∞ at the origin, here, since 

the minimum value of 𝑢  is positive unity, 

therefore 𝑉 𝑢 → −0.5𝐶𝛼2  for 𝑥 → 0or 𝑢 → 1 . 

In this case the singularity is as if covered by a 

point which is at finite distance from the origin 

or the actual singularity. Here the origin has 

been shifted to 𝑥 = 0 point. Therefore here the 

problem of fall at the origin reduces to the 

problem of fall at a point which is having finite 
positive special coordinate value. 

 
Figure1. The variation of |𝑉 𝑥 | with x 

For further investigation of this problem of fall 

at the center to some extent elaborately, let us 
get the geodesics of motion for the particle in 

Rindler space. We start with the equation 

 1 + 𝛼𝑥 2  
𝑑𝑡

𝑑𝜏
 

2

−  
𝑑𝑥

𝑑𝜏
 

2

= 1               (14)  

Hence we have after substituting for 
𝑑𝑡

𝑑𝜏
 from 

eqn.(7) 

𝜏 =  
𝑑𝑥

 
𝐶

 1+𝛼𝑥  2−1 

1
2

𝑥

0
                                  (15) 

Using the changed variable 𝑢(= 1 + 𝛼𝑥) , we 

have, 

α𝛕 = −
𝐂
𝟏
𝟐

𝛂
  𝟏 −  

𝟏+𝛂𝐱

𝐂
𝟏
𝟐

 

𝟐

 

𝟏

𝟐

−  𝟏 −
𝟏

𝐂
 

𝟏

𝟐
     (16) 

Since the uniform acceleration α of the frame is 
completely arbitrary, we shall study the 

variation of 𝛼𝑥  with α𝛕, keeping in 

consideration that α remains constant within this 

𝑥  range and is static in nature. The above 

equation can also be expressed in the following 

more convenient form 

𝛼𝑥 = 𝐶
1

2  1 −   1 −
1

𝐶
 

1

2
−

𝛼𝜏

𝐶
1
2

 

2

 − 1      (17) 

Which will give the variation of 𝛼𝑥 with α𝛕. 

Before we obtain numerically the variation of 

α𝑥 with α𝛕, we shall impose some constraints on 
the quantities appearing in the above equation. 

By inspection one can put the following 

restrictions: 𝐶 > 1, and if 𝛼𝑥 > 0, then 𝛼𝝉 > 0. 

Since we are measuring 𝑥  along positive 
direction and the frame is also moving with 

uniform acceleration α along positive 𝑥 -

direrction, the second constraint is also quit 
obvious. In fig.(2) we have shown the variation 

of 𝛼𝑥 with α𝛕 for three different 𝐶 values. From 

the curves one may infer that the geodesics are 

closed in nature; returned to the initial point, 

i.e., at 𝑥 = 0  or 𝑢 = 1  (Boomerang type 

geodesic), where the energy of the particle is 

minimum.  

The geodesics are not like the perihelion 

precession type as has been obtained in 

Schwarzschild geometry [17,18]. Although the 

gravitational field is constant throughout the 
region, the turning down of the particle, when it 

is dynamically disturbed from its equilibrium 

position is because of the minimum value of the 

energy of the particle at the origin  𝑥 = 0 . For 

the proper justification of our arguments as 

given above, we next consider the equation of 

motion of the particle under inverse square 
potential, given by eqn.(10). This equation has 

been solved numerically for the initial 

conditions 
𝑑𝑢

𝑑𝜏
= 0, i.e., the motion is assumed to 

be started from rest and for a number of initial 
positional coordinates in the scaled form given 

by 𝑢0. The boundary value of 𝑢 is unity, not the 

singular point  𝑢 = 0 , which is in the left 

Rindler wedge. In fig.(3) we have shown the 

geodesics of motion for three different 𝑢0 

values. 
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Figure2. The geodesics of motion for various 𝐶 

values: curve (a) is for 𝐶 = 2, (b) is for 𝐶 = 5, (c) is 

for 𝐶 = 10, and (d) is for 𝐶 = 25. 

 
Figure3. The geodesics of motion for various 𝑢0 

values: curve (a) is for 𝑢0 = 15, (b) is for 𝑢0 = 10 

and (c) is for 𝑢0 = 5. 

QUANTUM MECHANICAL EQUATION 

Now to complete the study of free fall at the 

center in our modified formalism , let us next 
investigate the quantum mechanical motion of 

the particle in inverse square attractive potential 

[14,16]. We consider the bound state problem, 

i.e., 𝐸 < 0. Re-substituting the exact form of 𝛕, 
we have the eigen value equation for a unit mass 

particle 

𝐻𝛹 𝑢 =  
𝑝2

2
−

𝛽

𝑢2
 𝛹 𝑢 = −𝐸𝛹(𝑢)        (18) 

Where 𝛽 =
𝛼2𝐶

2
. Hence we have  

𝑑2𝛹

𝑑𝑢2 +
𝛾

𝑢2 𝛹 𝑢 − 𝐾2𝛹 𝑢 = 0                    (19) 

Where 𝛾 =
2𝛽

ћ
2  and 𝐾2 =

2𝐸

ћ
2 . Therefore in the 

asymptotic region, i.e., 𝑢 → ∞,𝛹~𝑒−𝐾𝑢  or it 

goes to zero. The wave function is therefore 

well behaved at infinity. Next to study the 

nature of wave function near the point 𝑢 = 1, 

we substitute 𝛹 𝑢 =
𝑅(𝑢)

𝑢
. Then it can very 

easily be been shown that 𝑅(𝑢)  satisfies the 

equation 

𝑢2 𝑑2𝑅

𝑑𝑢 2 − 2𝑢
𝑑𝑅

𝑑𝑢
+  𝛾 − 2 − 𝐾2𝑢2 𝑅 = 0                                                       

(20) 

Putting 𝐾𝑢 = 𝜌 as a new variable, we have, 

𝑑2𝑅

𝑑𝜌 2 −
2

𝜌

𝑑𝑅

𝑑𝜌
+

𝛾−2

𝜌2 𝑅 − 𝑅 = 0      (21) 

To investigate the nature of 𝑅 near unit point we 

write 𝜌 = 𝜌0  in the denominator of the second 

and the third term and then put the limit 𝜌0 → 1. 

Then we have 

𝑑2𝑅

𝑑𝜌 2 − 2
𝑑𝑅

𝑑𝜌
+  𝛾 − 3 𝑅 = 0       (22) 

Then for 𝛾 < 4, we have the solution  

𝑢 𝜌 = exp(𝜌)  𝐴1𝑒𝑥𝑝   4 − 𝛾 
1

2𝜌 +

𝐴2𝑒𝑥𝑝−4−𝛾12𝜌               (23) 

Whereas for 𝛾 > 4, the solution is given by 

𝑢 𝜌 = exp(𝜌)  𝐴1𝑒𝑥𝑝  𝑖 𝛾 − 4 
1

2𝜌 +

𝐴2𝑒𝑥𝑝−𝑖𝛾−412𝜌              (24) 

The solutions are standard stationary type and 

exist for 𝜌 = 𝜌0 → 𝐾. Further, for bound state 

solution, i.e., for 𝐸 < 0,𝐸𝐾 <  𝑉 , where 𝐸𝐾 

and 𝑉  are the kinetic energy and attractive 

potential respectively. The quantity  𝑉  is 

maximum for 𝜌 = 𝜌0 = 𝐾 , i.e., at 𝑥 = 0  and 

approaches unity as ρ increases to infinity. 

Therefore the negative value of 𝐸 is maximum 
on the unit point. This indirectly indicates the 

“fall” on the point at 𝑢 = 1 . The basic 

difference with the usual solution is that the fall 

is not at the center (𝜌 = 0) which is covered by 
the unit point. 

CONCLUSION 

Therefore we may conclude that in the Rindler 
space the energy of the particle will be 

minimum at the point which is the newly 

defined origin or 𝑥 = 0  or 𝑢 = 1 . This 
indirectly indicate that the particle will occupy 

this point because of the minimum valus of the 

energy. This is true for classical as well as 
quantum mechanical scenarios. The other 

interesting finding of this work is that unlike the 

perihelion type geodesics these are closed type. 

We call them as boomerang geodesics. 
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APPENDIX 

In this appendix we shall give a short outline to 

show that
1

𝐿
  1 + 𝛼𝑥 𝛼  

𝑑𝑡

𝑑𝜆
 

2

+
𝑑2𝑥

𝑑𝜆2
 =

1

𝐿
  1 + 𝛼𝑥 𝛼  

𝑑𝑡

𝑑𝜏
 

2
 
𝑑𝜏

𝑑𝜆
 

2

+
𝑑2𝑥

𝑑𝜏 2

𝑑2𝜏

𝑑𝜆2
 =

𝛼𝐶

 1+𝛼𝑥  3 +
𝑑2𝑥

𝑑𝜏 2 = 0   (25) 

 We have 

𝑑𝑡

𝑑𝜆
=

𝑑𝑡

𝑑𝜏

𝑑𝜏

𝑑𝜆
= 𝐿

𝑑𝑡

𝑑𝜏
                                                                           

      (26) 

Hence 

 
𝑑𝑡

𝑑𝜏
 

2

= 𝐿2  
𝑑𝑡

𝑑𝜏
 

2

                                                                                    

(27) 

𝑑2𝑥

𝑑𝜆2 =
𝑑

𝑑𝜆
 
𝑑𝑥

𝑑𝜆
 =

𝑑

𝑑𝜏
 
𝑑𝑥

𝑑𝜆
  

𝑑𝜏

𝑑𝜆
                                                                  

(28) 

𝑑2𝑥

𝑑𝜆2 =
𝑑

𝑑𝜆
 
𝑑𝑥

𝑑𝜏
  

𝑑𝜏

𝑑𝜆
                                                                                    

(29) 

𝑑2𝑥

𝑑𝜆2 =
𝑑2𝑥

𝑑𝜏 2
 
𝑑𝜏

𝑑𝜆
 

2

= 𝐿2 𝑑2𝑥

𝑑𝜆2                                                                         

(30) 

Hence we have the above equality after putting, 
𝑑𝑡

𝑑𝜆
=

𝐶

 1+𝛼𝑥  2 
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